题目
数学递推数列,
设函数f(x)=lgx,已知项数为2m+1(m是正整数)且各项均为正数的等比数列{an},若f(a1)+f(a2)+…+f(a的第2m+1项)=1,求f(a的第m+1项)的值.
设函数f(x)=lgx,已知项数为2m+1(m是正整数)且各项均为正数的等比数列{an},若f(a1)+f(a2)+…+f(a的第2m+1项)=1,求f(a的第m+1项)的值.
提问时间:2021-04-06
答案
f(a1)=lga1+lgq,f(a2)=lga1+2lgq,…,f(a的第2m+1项)=lga1+(2m+1)lgq,加起来合并得:(2m+1)lga1+m(2m+1)lgq=(2m+1)(lga1+mlgq)=(2m+1)f(a的第m+1项)=1
得:1/(2m+1)
补:f(a的第m+1项) =lga1+mlgq
得:1/(2m+1)
补:f(a的第m+1项) =lga1+mlgq
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点