当前位置: > 已知抛物线y^2=x,直线l过(0,1),且与抛物线只有一个公共点,求直线l的方程....
题目
已知抛物线y^2=x,直线l过(0,1),且与抛物线只有一个公共点,求直线l的方程.

提问时间:2021-04-06

答案
因直线l过(0,1),故设直线方程为y-1=kx①
y^2=x②
连立得(kx+1)^2=x
化简得(kx)^2+(2k-1)x+1=0
因只有一个公共点,所以Δ=(2k-1)^2-4k^2=0
解得k=0.25
即直线L的方程为 x-4y+4=0
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.