当前位置: > ∫[(e^-t)sint]dt...
题目
∫[(e^-t)sint]dt
积分

提问时间:2021-04-06

答案
提供两种基本的解法
法1:设I=∫[(e^-t)sint]dt=-∫[(e^-t)(cost)']dt=-(e^-t)cost+∫(e^-t)'costdt=-(e^-t)cost-∫(e^-t)(sint)'dt=-(e^-t)cost-(e^-t)sint+∫[(e^-t)'sint]dt+C'(此为常数);即有I=-e^(-t)(sint+cost)-I+C',I=-e^(-t)(sint+cost)/2+C.
法2:设E=∫[e^-(t)sint]dt,F=∫[e^-(t)cost]dt,于是F+iE=∫[e^-(t)(cost+isint)]dt=∫[e^-(t)*e^(it)]dt=∫e^(-1+i)tdt=e^(-1+i)t/(-1+i)=-(1+i)[e^(-1+i)t]/2=-[(cost-sint)+i(cost+sint)]e^(-t)/2,比较虚部得:E=-e^(-t)(sint+cost)/2+C
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.