当前位置: > 将一副三角尺如图拼接:含30度角的三角尺(三角形abc)的长直角边与含45度角的三角尺(三角形ACD)的斜边...
题目
将一副三角尺如图拼接:含30度角的三角尺(三角形abc)的长直角边与含45度角的三角尺(三角形ACD)的斜边
恰好重合.已知AB=2根号3,P是AC上的一个动点.当点P运动到角ABC的平分线上时,连接DP.求DP的长

提问时间:2021-04-05

答案
将一副三角尺如图拼接:含30°角的三角尺(△ABC)的长直角边与含45°角的三角尺(△ACD)的斜边恰好重合.已知AB=2 3,P是AC上的一个动点.
(1)当点P运动到∠ABC的平分线上时,连接DP,求DP的长;
(2)当点P在运动过程中出现PD=BC时,求此时∠PDA的度数;
(3)当点P运动到什么位置时,以D,P,B,Q为顶点的平行四边形的顶点Q恰好在边BC上?求出此时▱DPBQ的面积.
在Rt△ABC中,AB=2 3,∠BAC=30°,
∴BC= 3,AC=3.
(1)如图(1),作DF⊥AC.
∵Rt△ACD中,AD=CD,
∴DF=AF=CF= 32.
∵BP平分∠ABC,
∴∠PBC=30°,
∴CP=BC•tan30°=1,
∴PF= 12,
∴DP= PF2+DF2= 102.
(2)当P点位置如图(2)所示时,根据(1)中结论,DF= 32,∠ADF=45°,又PD=BC= 3,
∴cos∠PDF= DFPD= 32,
∴∠PDF=30°.
∴∠PDA=∠ADF-∠PDF=15°.
当P点位置如图(3)所示时,同(2)可得∠PDF=30°.
∴∠PDA=∠ADF+∠PDF=75°.
(3)CP= 32.
在□DPBQ中,BC∥DP,
∵∠ACB=90°,
∴DP⊥AC.
根据(1)中结论可知,DP=CP= 32,
∴S□DPBQ=DP•CP= 94.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.