当前位置: > 若点P在抛物线Y^2=x上点Q在圆(x-3)^2+y^2=1上,则PQ的最小值是多少?...
题目
若点P在抛物线Y^2=x上点Q在圆(x-3)^2+y^2=1上,则PQ的最小值是多少?

提问时间:2021-04-05

答案
抛物线上任意一点p,则过p到园上最小的距离的线必是经过圆心o的,由于q到圆心的距离是一定的,值为1,则当op取得最小值时,pq也同时取得最小值,我们以o为圆心,以op为半径做一个圆,假设op=r则方程为(x-3)^2+y^2=r^2,那么当抛物线方程和这个圆的方程只有两个交点的时候,这个时候op的值是最小的,此时,这两个交点中有一个就是p,另一个关于x轴与p对称.那么把抛物线方程与圆的方程联立,当r值满足只有一个x解得时候,这个r就是op的最小值
方程联立,x^2-5x+9-r^2=0 要x只有一个解则25-4(9-r^2)=0,r=11^(1/2)/2则pq最小值=11^(1/2)/2-1
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.