当前位置: > 设函数f(x)=sinxcosx+cosx^2,求f(x)的最小正周期,当x属于【0,π/2】时,求函数f(x)的最大值和最小值....
题目
设函数f(x)=sinxcosx+cosx^2,求f(x)的最小正周期,当x属于【0,π/2】时,求函数f(x)的最大值和最小值.

提问时间:2021-04-05

答案
f(x)=sinxcosx + (cosx)^2
=(1/2)sin2x + (1/2)cos2x + 1/2
=(√2/2)[sin2x*cos(π/4) + cos2x*sin(π/4)] + 1/2
=(√2/2)sin(2x + π/4) + 1/2
最小正周期T=2π/2=π
当x∈[0,π/2]时,(2x + π/4)∈[π/4 ,5π/4]
f(x)最大值=(√2+1)/2
f(x)最小值=0
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.