当前位置: > 设n阶矩阵A的特征值为x1,x2,……xn.证明其和为a11+a22+……+ann...
题目
设n阶矩阵A的特征值为x1,x2,……xn.证明其和为a11+a22+……+ann

提问时间:2021-04-05

答案
A的特征多项式 f(λ) = |λE-A|
由行列式的定义可知它是一个关于λ的n次多项式,其λ^(n-1) 的系数为(-1)^(n-1)(a11+a22+……+ann)
另一方面 ,设A的n个特征值为λ1...λn,则
f(λ)= (λ-λ1)...(λ-λn),展开得λ^(n-1) 的系数为(-1)^(n-1)(λ1+...+λn)
比较 λ^(n-1) 的系数及常数项 即得结论.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.