题目
有没有关于二次根式的公式啊?
错了不是二次根式是一元二次
方程的
谢拉
错了不是二次根式是一元二次
方程的
谢拉
提问时间:2021-04-04
答案
一般形式
ax^2+bx+c=0(a、b、c是实数a≠0)
例如:x^2+2x+1=0
1..配方法(可解全部一元二次方程)
2.公式法(可解全部一元二次方程)
3.因式分解法(可解部分一元二次方程)(因式分解法又分“提公因式法”、“公式法(又分“平方差公式”和“完全平方公式”两种)”和“十字相乘法”.
4.开方法(可解全部一元二次方程)一元二次方程的解法实在不行(你买个卡西欧的fx-500或991的计算器 有解方程的,不过要一般形式)
5.代数法(可解全部一元二次方程)
直接介绍代数法
ax^2+bx+c=0
同时除以a,可变为x^2+bx+c=0
设:x=y-b/2
方程就变成:(y^2+b^2/4-by)+(by+b^2/2)+c=0
再变成:y^2+(b^2*3)/4+c=0
y=±√[(b^2*3)/4+c]
如何选择最简单的解法:
1、看是否可以直接开方解;
2、看是否能用因式分解法解(因式分解的解法中,先考虑提公因式法,再考虑平方公式法,最后考虑十字相乘法);
3、使用公式法求解;
4、最后再考虑配方法(配方法虽然可以解全部一元二次方程,但是有时候解题太麻烦).
知识要点:
一元二次方程和一元一次方程都是整式方程,它是初中数学的一个重点内容,也是今后学习数学的基础,应引起同学们的重视.
一元二次方程的一般形式为:ax^2+bx+c=0,(a≠0),它是只含一个未知数,并且未知数的最高次数是2的整式方程.
解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程.一元二次方程有四种解法:1、直接开平方法;2、配方法;3、公式法;4、因式分解法;5,代数法
ax^2+bx+c=0(a、b、c是实数a≠0)
例如:x^2+2x+1=0
1..配方法(可解全部一元二次方程)
2.公式法(可解全部一元二次方程)
3.因式分解法(可解部分一元二次方程)(因式分解法又分“提公因式法”、“公式法(又分“平方差公式”和“完全平方公式”两种)”和“十字相乘法”.
4.开方法(可解全部一元二次方程)一元二次方程的解法实在不行(你买个卡西欧的fx-500或991的计算器 有解方程的,不过要一般形式)
5.代数法(可解全部一元二次方程)
直接介绍代数法
ax^2+bx+c=0
同时除以a,可变为x^2+bx+c=0
设:x=y-b/2
方程就变成:(y^2+b^2/4-by)+(by+b^2/2)+c=0
再变成:y^2+(b^2*3)/4+c=0
y=±√[(b^2*3)/4+c]
如何选择最简单的解法:
1、看是否可以直接开方解;
2、看是否能用因式分解法解(因式分解的解法中,先考虑提公因式法,再考虑平方公式法,最后考虑十字相乘法);
3、使用公式法求解;
4、最后再考虑配方法(配方法虽然可以解全部一元二次方程,但是有时候解题太麻烦).
知识要点:
一元二次方程和一元一次方程都是整式方程,它是初中数学的一个重点内容,也是今后学习数学的基础,应引起同学们的重视.
一元二次方程的一般形式为:ax^2+bx+c=0,(a≠0),它是只含一个未知数,并且未知数的最高次数是2的整式方程.
解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程.一元二次方程有四种解法:1、直接开平方法;2、配方法;3、公式法;4、因式分解法;5,代数法
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1在山的那边山与海各自的特点是什么
- 2Miss Li can sing very good中的错误
- 3在等差数列{an}中,a100,且a11>|a10|,若{an}的前n项和Sn>0,则n的最大值为 (要过程)
- 4阳春三月,蔡主任办公桌上那盆青藤绿蔓的文竹中,忽而窜出一棵纤细的嫩芽,几天的工夫,就以雄壮威武的气势,翘首在枝蔓中.
- 5设{An}是公差不为零的等差数列,他的前9项和S9=90,且a3是a2a7的等比中项,求数列{A2n}的前100项和.)
- 6我第一次煮饭 四年级作文400字怎么写
- 7一桶油,第一次倒出1/5,第二次倒出总数的35%,还剩36千克.这桶油原来重多少千克?
- 8求证√a^2+b^2+c^2/3≥a+b+c/3
- 9一道巧妙的数学题:某会议有10名代表出席,已知任意4名代表中有1人与其余3人相识…
- 10一元一次方程,一元一次不等式与一次函数有何联系,简洁点,