题目
无穷级数 1/n 为何是发散的?无穷级数1/(n^2)和(1/n^3)又为何是收敛的?最好用图像作逻辑判断
无穷级数 1/n 是因为其SIGMA值随n值增大而不断累加,而且无极限,所以为发散的吗?
那1/(n^2)和(1/n^3)不也一样吗?为何又是收敛的呢?
无穷级数 1/n 是因为其SIGMA值随n值增大而不断累加,而且无极限,所以为发散的吗?
那1/(n^2)和(1/n^3)不也一样吗?为何又是收敛的呢?
提问时间:2021-04-04
答案
调和级数的证明比较抽象:
如果假设∑1/n收敛,记部份和为Sn,且设lim(n→∞)Sn=s
於是有lim(n→∞)S(2n)=s,有lim(n→∞)(S(2n)-Sn)=s-s=0
但是S(2n)-Sn=1/(n+1)+1/(n+2)+1/(n+n)>n/(n+n)=1/2,与lim(n→∞)(S(2n)-Sn)=s-s=0矛盾
所以调和级数∑1/n是发散的
又讨论P-级数∑1/(n^p)的敛散性.
(1)当p≤1时,因为n^p≤n,而调和级数∑1/n是发散的,根据比较审敛法知当01时,对於任意实数x,当n-1≤x1≤n,有1/n^p≤1/x^p
1/n^p=∫1/n^p dx((n-1)~n)
≤∫1/x^p dx((n-1)~n)
=1/(p-1)[1/(n-1)^(p-1)-1/n^(p-1)] (n=2,3,4.)
考虑级数∑[1/(n-1)^(p-1)-1/n^(p-1)],其部份和Sn=1-1/n^(p-1)
又有lim(n→∞)Sn=1,所以∑[1/(n-1)^(p-1)-1/n^(p-1)]收敛,根据比较审敛法,当p>1时,∑1/(n^p)收敛
如果假设∑1/n收敛,记部份和为Sn,且设lim(n→∞)Sn=s
於是有lim(n→∞)S(2n)=s,有lim(n→∞)(S(2n)-Sn)=s-s=0
但是S(2n)-Sn=1/(n+1)+1/(n+2)+1/(n+n)>n/(n+n)=1/2,与lim(n→∞)(S(2n)-Sn)=s-s=0矛盾
所以调和级数∑1/n是发散的
又讨论P-级数∑1/(n^p)的敛散性.
(1)当p≤1时,因为n^p≤n,而调和级数∑1/n是发散的,根据比较审敛法知当01时,对於任意实数x,当n-1≤x1≤n,有1/n^p≤1/x^p
1/n^p=∫1/n^p dx((n-1)~n)
≤∫1/x^p dx((n-1)~n)
=1/(p-1)[1/(n-1)^(p-1)-1/n^(p-1)] (n=2,3,4.)
考虑级数∑[1/(n-1)^(p-1)-1/n^(p-1)],其部份和Sn=1-1/n^(p-1)
又有lim(n→∞)Sn=1,所以∑[1/(n-1)^(p-1)-1/n^(p-1)]收敛,根据比较审敛法,当p>1时,∑1/(n^p)收敛
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1天地生人,生一人应有一人之业;人生在世,生一日当尽一日之勤.请谈谈你对这句话的理解?
- 2小花读一本故事书,第一天读了全书的10分之1,第二天读了35页,再度7页恰好是全书的40%,小花第一天读了多少也?
- 3氯化钠溶液能否与硝酸银生成白色沉淀且不溶于稀硝酸
- 4已知函数y=-x+1的图象与x轴、y轴分别交于点C、B,与双曲线y=k/x交于点A、D,若AB+CD=BC,则k的值为 _ .
- 5甲,乙两个工程队共修一条路,修完时,甲队修了全长的50%多15米,比乙队多修25%,甲队修了多少千米?
- 6Mke the change and just do 有没有语法错误?
- 7水池里有一些水,往里加水时,每次都加上次水池里水的2倍,加了3次后,水池的是是450吨,原来水池有水多少
- 8-15xay与-3x2yb-3是同类项,则a+b=( ) A.0 B.3 C.6 D.8
- 9写近义词 兴高采烈( )惊心动魄( ) 欣欣向荣(
- 10九个口八个破?(猜一汉字)