当前位置: > 如图,已知:△ABC中,∠C=90°,AC=BC,M是AB的中点,DE⊥BC于E,DF⊥AC于F.试判断△MEF的形状?并说明理由....
题目
如图,已知:△ABC中,∠C=90°,AC=BC,M是AB的中点,DE⊥BC于E,DF⊥AC于F.试判断△MEF的形状?并说明理由.

提问时间:2021-04-04

答案
△MEF是等腰直角三角形.
理由如下:连接MC,
∵∠C=90°,AC=BC,∴△ABC是等腰直角三角形,
∴∠B=45°,
又∵M是AB的中点,
∴CM=MB=
1
2
AB,CM⊥AB,∠ACM=45°,
∵DE⊥BC,DF⊥AC,
∴四边形CEDF是矩形,△BDE是等腰直角三角形,
∴CF=DE,DE=BE,
∴CF=BE,
在△CMF和△BME中,
CM=MB
∠ACM=∠B=45°
CF=BE

∴△CMF≌△BME(SAS),
∴ME=MF,∠CMF=∠BME,
∴∠EMF=∠CMF+∠CME=∠BME+∠CME=∠CMB=90°,
∴△MEF是等腰直角三角形.
连接MC,根据等腰直角三角形的性质可得∠B=45°,CM=MB=
1
2
AB,CM⊥AB,∠ACM=45°,再判断出四边形CEDF是矩形,根据矩形的对边相等可得CF=DE,然后判断出△BDE是等腰直角三角形,再求出DE=BE,从而得到CF=BE,然后利用“边角边”证明△CMF和△BME全等,根据全等三角形对应边相等可得ME=MF,全等三角形对应角相等可得∠CMF=∠BME,再求出∠EMF=90°,从而判定为△MEF是等腰直角三角形.

全等三角形的判定与性质;等腰直角三角形;矩形的判定与性质.

本题考查了全等三角形的判定与性质,等腰直角三角形的性质,矩形的判定与性质,熟记性质并作出辅助线构造成全等三角形是解题的关键.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.