当前位置: > 已知函数f(x)的周期为4,且等式f(2+x)=f(2-x),对一切x∈R成立,求证:f(x)为偶函数....
题目
已知函数f(x)的周期为4,且等式f(2+x)=f(2-x),对一切x∈R成立,求证:f(x)为偶函数.

提问时间:2021-04-04

答案
∵函数f(x)的周期为4
∴f(4+x)=f(x)而f(2+x)=f(2-x),对一切x∈R成立
则将x+2代入上式x中得f(4+x)=f(-x)=f(x)
∴f(x)为偶函数
先根据周期函数的定义得到f(4+x)=f(x),再根据“等式f(2+x)=f(2-x),对一切x∈R成立”得到f(4+x)=f(-x),从而很容易得到函数f(x)的奇偶性.

函数的周期性;函数奇偶性的判断.

本题主要考查了函数的周期性,以及函数奇偶性的判断,属于基础题.

举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.