当前位置: > 圆锥曲线问题 点P是曲线y=x^2-linx上任意一点,则点P到直线y=x+2的距离的最小值是?...
题目
圆锥曲线问题 点P是曲线y=x^2-linx上任意一点,则点P到直线y=x+2的距离的最小值是?

提问时间:2021-04-04

答案
设P(x,x^2-lnx),则d=/x-x^2+lnx-2/2^0.5
令f(x)=x-x^2+lnx-2,则f'(x)=1-2x+1/x,令f'(x)=0,得x=1,x=-1/2(因为x>0,所以舍去),把x=1代入得d=2^0.5
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.