当前位置: > 设等比数列an的首项为a(a>0),公比为q(q>0)前n项和为80,其中最大的一项为54,它的前2n项的和为6560,求a和q...
题目
设等比数列an的首项为a(a>0),公比为q(q>0)前n项和为80,其中最大的一项为54,它的前2n项的和为6560,求a和q
Sn=a1(1-q^n)/(1-q),S2n=a1(1-q^2n)/(1-q)
S2n/Sn=1+q^n=82
q^n=81,由于n是正整数
故q>1,所以a1=q-1
若末项最大,则an=a1q^(n-1)=q^n*a1/q=81(1-q)/q=54
q=3,a1=2
an=2*3^(n-1) 这里面为什么a1=q-1?

提问时间:2021-04-04

答案
S2n/Sn=1+q^n=82,由这个式子可以看出,q^n=81,将它代入Sn=a1(1-q^n)/(1-q)=80,就可以得到,a1=80(1-q)/(-80)=q-1.懂了吧?
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.