题目
点p是椭圆16x2+25y2=1600一点,F1 F2是椭圆的两个焦点
又知道P在x轴上方,F2为椭圆的右焦点,直线PF2斜率为-4√3,求三角形PF1F2的面积.
又知道P在x轴上方,F2为椭圆的右焦点,直线PF2斜率为-4√3,求三角形PF1F2的面积.
提问时间:2021-04-04
答案
F1、F2是是椭圆 x平方/100+y平方/64=1的左、右焦点,
则F1(-6,0),F2(6,0),
设P(x,y)是椭圆上一点,则
16x2+25y2=1600 (1)
y/x-6=-4倍根3 (2)
y大于0 (3)
联立上面3式,消去y,得19x2-225x+6500=0,
得x1=5或 x2=130/19
当 x2=130/19时,代入(2)得 y2=-64倍根3/19与(3)矛盾,舍去.
由x=5,得 y=4倍根3.
所以,△PF1F2的面积S= 1/2|F1F2|•h= 1/2×12×4倍根3= 24被根3.
则F1(-6,0),F2(6,0),
设P(x,y)是椭圆上一点,则
16x2+25y2=1600 (1)
y/x-6=-4倍根3 (2)
y大于0 (3)
联立上面3式,消去y,得19x2-225x+6500=0,
得x1=5或 x2=130/19
当 x2=130/19时,代入(2)得 y2=-64倍根3/19与(3)矛盾,舍去.
由x=5,得 y=4倍根3.
所以,△PF1F2的面积S= 1/2|F1F2|•h= 1/2×12×4倍根3= 24被根3.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1So we must be careful when we use the Internet.
- 2已知抛物线y=x的平方+kx+k-1.(-1<k<1)(1)证明该抛物线与x轴总有两个交点,(2)指出该抛物线与x轴交点的分布情况
- 3中国哪个地方最冷?气温最低多少?
- 4Father always ___(arrive)home early.
- 5氧气和臭氧组成什么?A单质 B化合物 C纯净物 D混合物E 氧化物
- 6is,jacket,a,is,black(.) 连词成句
- 7锌与稀硫酸反应的化学方程式
- 8古诗‘十五夜望月’的作者是谁
- 9最大的负整数是_,绝对值最小的有理数是_.
- 10给两个音节加上不同的声调,成不同的几个词语!
热门考点