题目
如图,PAB为割线且PA=AB,PO交⊙O于C,若OC=3,OP=5,则AB的长为( )
A.
B. 2
C.
D.
A.
10 |
B. 2
2 |
C.
6 |
D.
5 |
提问时间:2021-04-03
答案
延长PO到E,延长线与圆O交于点E,连接EB,AC,
∵OC=3,OP=5,
∴OE=OC=3,
∴EP=OE+OP=3+5=8,CP=OP-OC=5-3=2,
设PA=AB=x,则BP=2x,
∵四边形ACEB为圆O的内接四边形,
∴∠ACP=∠E,又∠P=∠P,
∴△ACP∽△EBP,
∴
=
,即
=
,
解得:x=2
或x=-2
(舍去),
则AB=2
.
故选B
∵OC=3,OP=5,
∴OE=OC=3,
∴EP=OE+OP=3+5=8,CP=OP-OC=5-3=2,
设PA=AB=x,则BP=2x,
∵四边形ACEB为圆O的内接四边形,
∴∠ACP=∠E,又∠P=∠P,
∴△ACP∽△EBP,
∴
CP |
BP |
AP |
EP |
2 |
2x |
x |
8 |
解得:x=2
2 |
2 |
则AB=2
2 |
故选B
延长PO到E,延长线与圆O交于点E,连接EB,AC,由半径OC的长,得到半径OE的长,再由OE+OP得出EP的长,OP-OC得出CP的长,由PA=AB,设出PA=AB=x,则BP=2x,根据四边形ACEB为圆O的内接四边形,利用圆内接四边形的外角等于它的内对角得到一对角相等,再由公共角相等,利用两对对应角相等的两三角形相似,可得出三角形ACP与三角形EBP相似,由相似得比例,将各自的长代入列出关于x的方程,求出方程的解得到x的值,即为AB的长.
切割线定理.
此题考查了圆内接四边形的性质,相似三角形的判定与性质,利用了转化及方程的思想,其中作出如图所示的辅助线是解本题的关键.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点