题目
证明经过定点(x,y)的直线系方程为A1x+B1y+C1+λ(A2x+B2y+C2)=0和A2x+B2y+C2=0(λ为参数)
已知A1x+B1y+C1=0与A2x+B2y+C2=0的交点坐标为(x,y)。证明经过定点(x,y)的直线系方程为A1x+B1y+C1+λ(A2x+B2y+C2)=0和A2x+B2y+C2=0(λ为参数)
已知A1x+B1y+C1=0与A2x+B2y+C2=0的交点坐标为(x,y)。证明经过定点(x,y)的直线系方程为A1x+B1y+C1+λ(A2x+B2y+C2)=0和A2x+B2y+C2=0(λ为参数)
提问时间:2021-04-02
答案
证明:当A1x+B1y+C1=0且A2x+B2y+C2=0时,直线系方程成立.则它过两直线的交点.
(1)当斜率存在时:
将A1x+B1y+C1+λ(A2x+B2y+C2)=0化成斜截式得到斜率k=-(A1+λA2)/(B1+λB2)=-(A2(B1+λB2)/B2+A1-A2B1/B2)/(B1+λB2)=-(A2/B2+(A1-A2B1/B2)/B1+λB2)=k1+k2/x *
此时λ≠-B1/B2
由于两直线有交点,不平行,则A1/B1≠A2/B2,则k2≠0,y=k2/x取遍除0以外所有的实数,则(*)式满足k≠-A2/B2,又A2x+B2y+C2=0的斜率为-A2/B2.
所以直线系方程涵盖了所有斜率.
(2)斜率不存在.则λ=-B1/B2,此时必定A1+λA2≠0,平行于y轴的直线存在.
综上所述,直线系方程涵盖了所有情况.满足要求.
证毕.
注:其实直线系方程的写法有很多种,只要满足所有可能情况就行.比如设那两条直线的交点为(x0,y0),过这一点的直线系方程为y-y0=k(x-x0)和x=x0,其中k为参数.它们的意义是相同的.
(1)当斜率存在时:
将A1x+B1y+C1+λ(A2x+B2y+C2)=0化成斜截式得到斜率k=-(A1+λA2)/(B1+λB2)=-(A2(B1+λB2)/B2+A1-A2B1/B2)/(B1+λB2)=-(A2/B2+(A1-A2B1/B2)/B1+λB2)=k1+k2/x *
此时λ≠-B1/B2
由于两直线有交点,不平行,则A1/B1≠A2/B2,则k2≠0,y=k2/x取遍除0以外所有的实数,则(*)式满足k≠-A2/B2,又A2x+B2y+C2=0的斜率为-A2/B2.
所以直线系方程涵盖了所有斜率.
(2)斜率不存在.则λ=-B1/B2,此时必定A1+λA2≠0,平行于y轴的直线存在.
综上所述,直线系方程涵盖了所有情况.满足要求.
证毕.
注:其实直线系方程的写法有很多种,只要满足所有可能情况就行.比如设那两条直线的交点为(x0,y0),过这一点的直线系方程为y-y0=k(x-x0)和x=x0,其中k为参数.它们的意义是相同的.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1正四面体是不是“所有棱长都相等的三棱锥”?
- 2一块钱买一瓶可乐,两个空瓶可以换一瓶可乐,现在有20块,问可以喝几瓶可乐?谢谢了,大神帮忙啊
- 3他说他5岁时可以骑自行车 用英语翻译
- 4小于20的数中,两个合数互质的有( )组
- 5小明想拍一张雨后晴空的照片,小华建议他加一块滤色镜,小明应选择( ) A.红滤色镜 B.黄滤色镜 C.蓝滤色镜 D.绿滤色镜
- 6线段垂直平分线定理
- 7(1/2)在体温平衡中,由于寒冷刺激皮肤冷觉感受器,到传入神经,下丘脑体温调节中枢再分析综合到产生激...
- 8菱形ABCD中,角ADC=120度,AC=12倍根号3.(1)求AD的长(2)求菱形ABCD的面积.
- 9quite a catch
- 1026个字母前 那些要用an
热门考点