题目
已知∠AOB=90°,OM是∠AOB的平分线,将一个直角三角板的直角顶点P放在射线OM上,OP=m(m为常数且m≠0),移动直角三角板,两边分别交射线OA,OB与点C,D
(1)如图,当点C、D都不与点O重合时,求证:PC=PD;
(2)联结CD,交OM于E,设CD=x,PE=y,求y与x之间的函数关系式;
(3)如图,若三角板的一条直角边与射线OB交于点D,另一直角边与直线OA,直线OB分别交于点C,F,且△PDF与△OCD相似,求OD的长.
(1)如图,当点C、D都不与点O重合时,求证:PC=PD;
(2)联结CD,交OM于E,设CD=x,PE=y,求y与x之间的函数关系式;
(3)如图,若三角板的一条直角边与射线OB交于点D,另一直角边与直线OA,直线OB分别交于点C,F,且△PDF与△OCD相似,求OD的长.
提问时间:2021-04-02
答案
(1)证明:作PH⊥OA于H,PN⊥OB于N,
则∠PHC=∠PND=90°,
则∠HPC+∠CPN=90°
∵∠CPN+∠NPD=90°
∴∠HPC=∠NPD,
∵OM是∠AOB的平分线
∴PH=PN,∠POB=45°,
∵在△PCH与△PDN中,
,
∴△PCH≌△PDN(ASA)
∴PC=PD;
(2) ∵PC=PD,
∴∠PDC=45°,
∴∠POB=∠PDC,
∵∠DPE=∠OPD,
∴△PDE∽△POD,
∴PE:PD=PD:PO,
又∵PD2=
CD2,
∴PE=
x2,即y与x之间的函数关系式为y=
x2;
(3)①如图1,点C在AO上时,∵∠PDF>∠CDO,
令△PDF∽△OCD,
∴∠DFP=∠CDO,
∴CF=CD,
∵CO⊥DF
∴OF=OD
∴OD=
DF=OP=m;
②如图2,点C在AO的延长线上时,
△PDF与△OCD相似,若∠2=∠PFD,则PC∥CD,与PC、DC相交于点C矛盾,
所以,只能是∠1=∠2,
由(1)可知PC=PD,
∴△PCD是等腰直角三角形,
∴∠1+∠2=45°,
∴∠1=22.5°,
过点P作PG⊥OM交OD于G,
∵∠AOB=90°,OM是∠AOB的平分线,
∴△POG是等腰直角三角形,
∴OG=
OP=
m,
PG=OP=m,
∵∠1+∠3=∠PGO=45°,
∴∠3=22.5°,
∴∠1=∠3,
∴PG=DG=m,
∴OD=OG+DG=
m+m=(
+1)m,
综上所述,OD的长为:m或(
+1)m.
则∠PHC=∠PND=90°,
则∠HPC+∠CPN=90°
∵∠CPN+∠NPD=90°
∴∠HPC=∠NPD,
∵OM是∠AOB的平分线
∴PH=PN,∠POB=45°,
∵在△PCH与△PDN中,
|
∴△PCH≌△PDN(ASA)
∴PC=PD;
(2) ∵PC=PD,
∴∠PDC=45°,
∴∠POB=∠PDC,
∵∠DPE=∠OPD,
∴△PDE∽△POD,
∴PE:PD=PD:PO,
又∵PD2=
1 |
2 |
∴PE=
1 |
2m |
1 |
2m |
(3)①如图1,点C在AO上时,∵∠PDF>∠CDO,
令△PDF∽△OCD,
∴∠DFP=∠CDO,
∴CF=CD,
∵CO⊥DF
∴OF=OD
∴OD=
1 |
2 |
②如图2,点C在AO的延长线上时,
△PDF与△OCD相似,若∠2=∠PFD,则PC∥CD,与PC、DC相交于点C矛盾,
所以,只能是∠1=∠2,
由(1)可知PC=PD,
∴△PCD是等腰直角三角形,
∴∠1+∠2=45°,
∴∠1=22.5°,
过点P作PG⊥OM交OD于G,
∵∠AOB=90°,OM是∠AOB的平分线,
∴△POG是等腰直角三角形,
∴OG=
2 |
2 |
PG=OP=m,
∵∠1+∠3=∠PGO=45°,
∴∠3=22.5°,
∴∠1=∠3,
∴PG=DG=m,
∴OD=OG+DG=
2 |
2 |
综上所述,OD的长为:m或(
2 |
(1)作PH⊥OA于H,PN⊥OB于N,根据角平分线的性质可得PM=PG,根据ASA可证△PCM≌△PDN,根据全等三角形的性质可得PC=PD;
(2)根据AA可证△PDE∽△POD,根据相似三角形的性质,等腰直角三角形的性质即可得到y与x之间的函数关系式;
(3)分①点C在AO上,根据相似三角形的性质和线段垂直平分线的性质即可求得OD的长;②点C在AO的延长线上,△PDF与△OCD相似只能是∠1=∠2,根据等腰直角三角形的性质可得∠BDC=45°,然后求出∠1=22.5°,过点P作PG⊥OM交OD于G,根据等腰直角三角形的性质求出OG,根据三角形的一个外角等于与它不相邻的两个内角的和求出∠3=22.5°,从而得到∠1=∠3,根据等角对等边的性质可得PG=DG=m,然后根据OD=OG+DG计算即可得解.
(2)根据AA可证△PDE∽△POD,根据相似三角形的性质,等腰直角三角形的性质即可得到y与x之间的函数关系式;
(3)分①点C在AO上,根据相似三角形的性质和线段垂直平分线的性质即可求得OD的长;②点C在AO的延长线上,△PDF与△OCD相似只能是∠1=∠2,根据等腰直角三角形的性质可得∠BDC=45°,然后求出∠1=22.5°,过点P作PG⊥OM交OD于G,根据等腰直角三角形的性质求出OG,根据三角形的一个外角等于与它不相邻的两个内角的和求出∠3=22.5°,从而得到∠1=∠3,根据等角对等边的性质可得PG=DG=m,然后根据OD=OG+DG计算即可得解.
相似形综合题.
本题主要考查了直角三角形的性质,全等三角形的判定与性质以及相似三角形的判定和性质等知识点,根据三角形相似或全等得出线段之间以及角之间的关系是解题的关键,(3)要分情况讨论,容易漏解而导致出错.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
- 1怎么写化学反应方程式?
- 2When you put your __(1)__ under the water ,you cannot keep it __(2)__ long
- 3英语句子翻译 whatever is good in me today
- 4teach在问句当中需要变复数吗?
- 5love ang el bear
- 6一道超简单选择题
- 7已知一圆经过点A(4,-2)、B(-1,3)两点且在两个坐标轴上的截距之和为4
- 885w的节能灯 用 12小时得几度电?
- 9we should have enough vegetables every day.一般疑问句
- 10物体受三个共点力的作用,大小分别为5N,7N,11N,则这三个合力最小为多少
热门考点
- 1直线xsinα-(根号3)y+1=0的倾斜角的取值范围是?
- 2仿照宋词如梦令的形式写一首词!
- 3绝缘体和导体摩擦为什么不能起点
- 4初3数学题``关于一元2次方程的运用~!
- 5在北美,由苏必利尔湖,伊利湖,密歇根湖等组成的湖群叫?
- 6形容年纪大的成语
- 7-(13又1/3)/5+(-5又2/3)/5+(-(-196又1/7)/5+(-76又1/7)/5
- 8(2010•安徽)甲从正方形四个顶点中任意选择两个顶点连成直线,乙从该正方形四个顶点中任意选择两个顶点连成直线,则所得的两条直线相互垂直的概率是( ) A.318 B.418 C.518 D.618
- 9说着,老虎朝猴子扑过来 英语 :With()(),the tiger came at the monkey
- 101、已知函数f(x)的图像与函数h(x)=x+1/x+2的图像关于点(0,1)对称,求f(x)的解析式.