当前位置: > 设a>0,证明f(x)=ax平方+bx+c在(-b/2a,+∞)上是增函数...
题目
设a>0,证明f(x)=ax平方+bx+c在(-b/2a,+∞)上是增函数

提问时间:2021-04-02

答案
配方得:f(x)=a[x+b/(2a)]^2+c-b^2/(4a)
设x1>x2>-b/(2a),则有
x1+b/(2a)>x2+b/(2a)>0
a[x1+b/(2a)]^2>a[x2+b/(2a)]^2
因此f(x1)>f(x2)
所以在(-b/2a,+∞)上是增函数
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.