当前位置: > 已知等比数列{an}中,a4-a2=a2+a3=24,记数列{an}的前n项和为Sn,...
题目
已知等比数列{an}中,a4-a2=a2+a3=24,记数列{an}的前n项和为Sn,
1、求数列{an}的通项公式
2、数列{bn}中,b1=2,b2=3,数列{bn}的前n项和Tn满足:T(n+1)+ T(n-1)=2Tn+1(n>=2,n∈N*),求Sn/2-2^(bn)的值

提问时间:2021-04-02

答案
(1)全化为首项a1和公比q.列出方程式a1*q^3-a1*q=24和a1*q+a1*q^2=24.解得a1=4 ,q=2
得出an=2^(n+1)
(2)通过移项得T(n+1)-Tn=Tn-T(n-1)=1.即b(n+1)=bn+1.bn通项为bn=n+1
Sn/2=2(2^n-1)
Sn/2-2^(bn)=2^(n+1)-2-2^(n+1)=-2
就是这样=
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.