题目
在ΔABC中,∠BAC与∠ABC的角平分线AE,BE相交于点E,延长AE交ΔABC的外接圆于点D,连结BD,CD,CE且∠BDA=60°.
(1)求证:ΔBDE为等边三角形
(2)若∠BDE=120°,猜想BDCE是怎样的四边形 并证明你的猜想.
(1)求证:ΔBDE为等边三角形
(2)若∠BDE=120°,猜想BDCE是怎样的四边形 并证明你的猜想.
提问时间:2021-04-02
答案
(1)
∠BAC与∠ABC的角平分线AE,BE相交于点E
-> ∠BAE=∠EAC,∠ABE=∠EBC
延长AE交ΔABC的外接圆于点D
-> ∠EAC=∠CBD
-> ∠BAE=∠EAC=∠CBD
∠BED=∠ABE+∠BAE
∠EBD=∠EBC+∠CBD
-> ∠BED=∠EBD
∠BDA=60°
-> ∠BED=∠EBD=∠BDA=60°
-> ΔBDE为等边三角形
(2)
∠BDE=120°这个条件是不是应该∠BDC=120°
若∠BDC=120°,则四边形BDCE是个菱形
证:如上题所证ΔBDE为等边三角形
-> BE=BD=ED,∠BDE=60°
∠BDC=120°
-> ∠EDC=60°
AE平分∠BAC
-> BD=DC
-> ΔDCE为等边三角形
-> EC=DC=ED
BE=BD=ED
-> BE=BD=EC=DC
-> 四边形BDCE是个菱形
∠BAC与∠ABC的角平分线AE,BE相交于点E
-> ∠BAE=∠EAC,∠ABE=∠EBC
延长AE交ΔABC的外接圆于点D
-> ∠EAC=∠CBD
-> ∠BAE=∠EAC=∠CBD
∠BED=∠ABE+∠BAE
∠EBD=∠EBC+∠CBD
-> ∠BED=∠EBD
∠BDA=60°
-> ∠BED=∠EBD=∠BDA=60°
-> ΔBDE为等边三角形
(2)
∠BDE=120°这个条件是不是应该∠BDC=120°
若∠BDC=120°,则四边形BDCE是个菱形
证:如上题所证ΔBDE为等边三角形
-> BE=BD=ED,∠BDE=60°
∠BDC=120°
-> ∠EDC=60°
AE平分∠BAC
-> BD=DC
-> ΔDCE为等边三角形
-> EC=DC=ED
BE=BD=ED
-> BE=BD=EC=DC
-> 四边形BDCE是个菱形
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1一道数学命题题
- 2There are models of over a hundred places of interest from all over the world的中文意思是什么
- 3陶渊明是哪个朝代什么派的诗人
- 4两只相同的水桶都盛满水,其中甲水桶水面上浮着一块木头,则两桶重力的大小是 ( ) A.甲大 B.乙大 C.一样大 D.无法确定
- 5已已知一次函数的图象经过点(3,-3),并且与直线y =4x-3相交于x轴上一点,求此一次函数的解析式.
- 6天游峰的扫路人苏教版六年级练习册答案
- 7Where is the girl now的中文意思
- 8甲、乙两地相距420千米,其中一段路面铺了柏油,另一段是土路.一辆汽车8小时从甲地驶达乙地,已知在柏油路上行驶的速度是每小时60千米,而在土路上的行驶速度是每小时40千米.土路长多少千米?
- 9七年级作文《我为你喝彩》
- 10y=(x^2+2)^2 求导