当前位置: > 高等数学多元复合函数的题...
题目
高等数学多元复合函数的题
设x=(y,x),y=(x,z),z=(z,x)都是由方程F(x,y,z)=0所确定的具有连续偏导数的函数,证明(axay)(ayaz)(azax)=-1
勇士们,拔出你们锋芒的笔,***过来吧

提问时间:2021-04-01

答案
有点看不明白你设的那是什么意思,漏写个符号f吧
F(x,y,z)=0,就确定了函数z=f(x,y),这是毫无疑问的
因此就有:az/ax=-(aF/ax)/(aF/az)
az/ay=-(aF/ay)/(aF/az)
(az/ax)*(ay/az)=[(aF/ax)*(aF/az)]/[(aF/az)*(aF/ay)
=(aF/ax)/(aF/ay)
同理,F(x,y,z)=0,就确定了函数z=f(x,y)
因此有:
ax/ay=-(aF/ay)/(aF/ax).
(axay)(ayaz)(azax)=-[(aF/ax)/aF/ay)]*[(aF/ay)/(aF/ax)]=-1
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.