题目
欧几里德空间中关于内积函数的度量矩阵是怎么理解的
关于一个欧几里德空间V的一个基,我们把内积函数在基向量上的值写成的一个矩阵称为关于该基的度量矩阵.
关于一个欧几里德空间V的一个基,我们把内积函数在基向量上的值写成的一个矩阵称为关于该基的度量矩阵.
提问时间:2021-04-01
答案
首先你得理解基的作用.
一般的向量是比较抽象和绝对的概念,引入了基之后向量就可以用相对于这组基的坐标来表示,这样就把抽象的向量转化到具体的坐标(也就是一组数).
在有了基之后抽象的线性变换也就可以用具体的矩阵来描述了.
这里的道理是一样的,用Gram矩阵可以把抽象的内积转化到一组具体的数.
比如说e_1,e_2,...,e_n是V的一组基,若向量a和b在这组基下的向量分别是x和y,记E=(e_1,e_2,...,e_n),那么形式上就有a=Ex,b=Ey,而它们的内积恰好就是
=(Ey)^H*(Ex)=y^H*G*x
这里G=E^H*E就是Gram矩阵,跳过中间的形式推导,内积运算就转化到了矩阵乘法.
当然,形式推导也可以严格化,一种方式是直接按分量来写,另一种方式是对向量直接定义诸如转置共轭和乘法运算.
一般的向量是比较抽象和绝对的概念,引入了基之后向量就可以用相对于这组基的坐标来表示,这样就把抽象的向量转化到具体的坐标(也就是一组数).
在有了基之后抽象的线性变换也就可以用具体的矩阵来描述了.
这里的道理是一样的,用Gram矩阵可以把抽象的内积转化到一组具体的数.
比如说e_1,e_2,...,e_n是V的一组基,若向量a和b在这组基下的向量分别是x和y,记E=(e_1,e_2,...,e_n),那么形式上就有a=Ex,b=Ey,而它们的内积恰好就是
=(Ey)^H*(Ex)=y^H*G*x
这里G=E^H*E就是Gram矩阵,跳过中间的形式推导,内积运算就转化到了矩阵乘法.
当然,形式推导也可以严格化,一种方式是直接按分量来写,另一种方式是对向量直接定义诸如转置共轭和乘法运算.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
- 1在俄罗斯,加拿大 ,中国,美国,巴西,澳大利亚中,位于大西洋西岸的国家有哪些?
- 2(4x一1)除以(x十2)(x一1)=m除以(x十2)加上x除以(x一1),则m等于
- 3同样直径的铜线和铁线,铁线的导电是铜的百分之多少?
- 4用手反复弯折铁丝,弯折处的分子热运动_,温度升高,这是通过_的方式改变铁丝的内能.
- 5若1/3m-5与2/3m-1是同一个数的平方根 这个数是多少.
- 6How to study for a English test英语作文 80词不要太长
- 7为什么西方人认为秦始皇和隋文帝是中国历史上最伟大的皇帝?秦朝和隋朝相比哪个更强大呢?
- 8LOOK at the skirt的中文意思是什么?
- 9如图所示,CD为圆O的弦,P为弧CD上的任意一点不与CD重合,AB为圆O的直径,∠APC=∠APD,求证AB与CD的关系
- 10等比数列1,2a,4a2,8a3,…的前n项和Sn= _ .
热门考点