题目
已知,在矩形abcd中,AB=a bc=b 动点M从A出发沿边AD向点D运动
1.当b>2a时,点 在运动过程中,是否存在角BMC为九十度;存在,请证明;不存在,说明理由
2.当b<2a时.(题目同上)
1.当b>2a时,点 在运动过程中,是否存在角BMC为九十度;存在,请证明;不存在,说明理由
2.当b<2a时.(题目同上)
提问时间:2021-04-01
答案
(1)证明:∵b=2a,点M是AD的中点,
∴AB=AM=MD=DC=a,
又∵在矩形ABCD中,∠A=∠D=90°,
∴∠AMB=∠DMC=45°,
∴∠BMC=90°.
存在,
理由:若∠BMC=90°,
则∠AMB+∠DMC=90°,
又∵∠AMB+∠ABM=90°,
∴∠ABM=∠DMC,
又∵∠A=∠D=90°,
∴△ABM∽△DMC,
∴AM∕CD=AB∕DM,
设AM=x,则x∕a=a∕b-x,
整理得:x2-bx+a2=0,
∵b>2a,a>0,b>0,
∴△=b2-4a2>0,
∴方程有两个不相等的实数根,且两根均大于零,符合题意,
∴当b>2a时,存在∠BMC=90°,
不成立.
理由:若∠BMC=90°,
由(2)可知x2-bx+a2=0,
∵b<2a,a>0,b>0,
∴△=b2-4a2<0,
∴方程没有实数根,
∴当b<2a时,不存在∠BMC=90°,即(2)中的结论不成立.
∴AB=AM=MD=DC=a,
又∵在矩形ABCD中,∠A=∠D=90°,
∴∠AMB=∠DMC=45°,
∴∠BMC=90°.
存在,
理由:若∠BMC=90°,
则∠AMB+∠DMC=90°,
又∵∠AMB+∠ABM=90°,
∴∠ABM=∠DMC,
又∵∠A=∠D=90°,
∴△ABM∽△DMC,
∴AM∕CD=AB∕DM,
设AM=x,则x∕a=a∕b-x,
整理得:x2-bx+a2=0,
∵b>2a,a>0,b>0,
∴△=b2-4a2>0,
∴方程有两个不相等的实数根,且两根均大于零,符合题意,
∴当b>2a时,存在∠BMC=90°,
不成立.
理由:若∠BMC=90°,
由(2)可知x2-bx+a2=0,
∵b<2a,a>0,b>0,
∴△=b2-4a2<0,
∴方程没有实数根,
∴当b<2a时,不存在∠BMC=90°,即(2)中的结论不成立.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1名人写积极向上的作文
- 2数学题目一堆煤需要3天运完,第一天运了它的5分之1.第二,三天运走的比是5:8.已知第三天比第一天多运38吨
- 3每100克苹果中含有各种维生素多少克?
- 4若x+y+z=0,求x(1/y+1/z)+y(1/x+1/z)+z(1/x+1/y)的值.
- 5把棱长为1cm的若干个小正方体摆放如图所示的几何体,然后在露出的表面涂上颜色(不含底面).
- 6怎么计算 C(下标10 上标5)怎么算
- 7分解因式:(x的平方加x加1)(x的平方加x加2)减12
- 8tan(45°+α)=根号2,则sin2α=
- 9一台电冰箱每天耗电约1度,100万台这样的冰箱大约每天耗电( ) A.104度 B.105度 C.106度 D.107度
- 10某车间有男工20人,平均年龄42.5岁,有女工25人,平均年龄38岁,这个车间工人的平均年龄是多少岁? 要过程!