当前位置: > 已知二次函数f(x)=ax2+bx且f(2)=0,方程f(x)-1=0有两个相等的实数根. (1)求函数f(x)的解析式; (2)用定义证明f(x)在[1,+∞)上是减函数; (3)当x∈[-1/2,...
题目
已知二次函数f(x)=ax2+bx且f(2)=0,方程f(x)-1=0有两个相等的实数根.
(1)求函数f(x)的解析式;
(2)用定义证明f(x)在[1,+∞)上是减函数;
(3)当x∈[-
1
2

提问时间:2021-04-01

答案
(1)∵函数f(x)=ax2+bx,
∴f(2)=4a+2b=0,①
∵方程f(x)-1=0,得
ax2+bx-1=0有两个相等的实数根.
∴△=b2+4a=0 ②,
联立①②,解得
∴a=-1或a=0(舍),
∴b=2,
∴f(x)=-x2+2x,
∴函数f(x)的解析式:f(x)=-x2+2x.
(2)任设x1,x2∈[1,+∞),且x1<x2
则f(x1)-f(x2)=-x1 2+2x1+x22-2x2
=(x2-x1)[2-(x1+x2)],
∵1≤x1≤x2
∴x2-x1>0,x1+x2>2,
∴f(x1)-f(x2)>0,
∴f(x)在[1,+∞)上是减函数;
(3)如图示:
当x=1时,函数有最大值1,
当x=-
1
2
时,函数有最小值-
5
4
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.