当前位置: > 设a^2sinθ+acosθ-1=0,b^2sinθ+bcosθ-1=0,(a不等于b,θ属于R),则过A(a,a^2),B(b,b^2) 的直线到原点的距离是...
题目
设a^2sinθ+acosθ-1=0,b^2sinθ+bcosθ-1=0,(a不等于b,θ属于R),则过A(a,a^2),B(b,b^2) 的直线到原点的距离是

提问时间:2021-04-01

答案
a^2sinθ+acosθ-1=0,b^2sinθ+bcosθ-1=0
a=(-cosθ+√(cos^2θ+4sinθ)/(2sinθ)
b=(-cosθ-√(cos^2θ+4sinθ)/(2sinθ)
a+b=-cotθ.ab=-/sinθ
直线Y=KX+C,(a,a^2),B(b,b^2)
(a+b)x-Y-ab=0
原点(0,0)到直线距离:
=-ab/√(1+(a+b)^2)
=1
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.