当前位置: > 求解一道超难数列难题...
题目
求解一道超难数列难题
如题~a1=2,an=1-1/a(n-1)设an=Asin(wn+Φ)+B,A>0,W>0,|Φ|

提问时间:2021-04-01

答案
还是我来吧.看见你们晕死了.
a1=2,a2=1/2,a3=-1,a4=2,再循环下去,周期T=3
就是a(n+3)=an,按通式得
sin(wn+3w+φ)=sin(wn+φ),3w=2π,w=2π/3,
由通式带n分别为1、2、3的情况
1、Asin(2π/3+φ)+B=2
2、Asin(4π/3+φ)+B=1/2
3、Asin(2π+φ)+B=-1,----就是Asinφ+B=2.
其中1、2式化简为
A(-1/2 sinφ+√3/2 cosφ)+B=2
A(-1/2 sinφ-√3/2 cosφ)+B=1/2
两式相加得-Asinφ+2B=5/2
再与3式联立方程,求得
B=1/2,Asinφ=-3/2,
将他们带入1或2式,闪电般速度求出
Acosφ=√3/2
将Asinφ=-3/2与Acosφ=√3/2平方相加
迅速的求出A=√3,
然后再迅雷不及掩耳盗铃之势求出
sinφ=-√3/2
由你的条件,|Φ|
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.