题目
已知抛物线y=ax的平方+bx+c的顶点坐标为(2,4)
(1)使用含a的代数式分别表示b,c
(2)若直线y=kx+4(k不为零)与y轴及该抛物线的交点依次为D,E,F,且S三角形ODE:S三角形OEF=1:3,其中O为原点坐标,试用含a的代数式表示k
(3)在(2)的条件下,若直线EF的长m满足大于等于3倍根号2且小于等于3倍根号5,是确定a的取值范围.
(1)使用含a的代数式分别表示b,c
(2)若直线y=kx+4(k不为零)与y轴及该抛物线的交点依次为D,E,F,且S三角形ODE:S三角形OEF=1:3,其中O为原点坐标,试用含a的代数式表示k
(3)在(2)的条件下,若直线EF的长m满足大于等于3倍根号2且小于等于3倍根号5,是确定a的取值范围.
提问时间:2021-04-01
答案
(1)抛物线y=ax的平方+bx+c的顶点坐标为(2,4)
-b/2a=2
b=-4a
y(2)=4a+2b+c=4
c=4+4a
(2)S三角形ODE:S三角形OEF=1:3
DE:EF=1:3
xE:xF=1:4
y=ax^2-4ax+4+4a
y=kx+4
ax^2-(4a+k)x+4a=0
xExF=4
xE=1,xF=4或
xE=-1,xF=-4
xE+xF=5或xE+xF=-5
4+k/a=5或4+k/a=-5
k=a或k=-9a
判别式=8ak+k^2>0
(3)
m^2=(xE-xF)^2+(yE-yF)^2=(xE-xF)^2+k^2*(xE-xF)^2=(k^2+1)[(xE+xF)^2-4xE*xF]=
=(k^2+1)(25-16)= 9(k^2+1)∈(18,45)
(k^2+1)∈(2,5)
[1]
k=a
a^2∈(1,4)
a∈(-2,-1)∪(1,2)
[2]
k=-9a
81a^2∈(1,4)
a∈(-2/9,-1/9)∪(1/9,2/9)
故a∈(-2,-1)∪(-2/9,-1/9)∪(1/9,2/9)∪(1,2)
-b/2a=2
b=-4a
y(2)=4a+2b+c=4
c=4+4a
(2)S三角形ODE:S三角形OEF=1:3
DE:EF=1:3
xE:xF=1:4
y=ax^2-4ax+4+4a
y=kx+4
ax^2-(4a+k)x+4a=0
xExF=4
xE=1,xF=4或
xE=-1,xF=-4
xE+xF=5或xE+xF=-5
4+k/a=5或4+k/a=-5
k=a或k=-9a
判别式=8ak+k^2>0
(3)
m^2=(xE-xF)^2+(yE-yF)^2=(xE-xF)^2+k^2*(xE-xF)^2=(k^2+1)[(xE+xF)^2-4xE*xF]=
=(k^2+1)(25-16)= 9(k^2+1)∈(18,45)
(k^2+1)∈(2,5)
[1]
k=a
a^2∈(1,4)
a∈(-2,-1)∪(1,2)
[2]
k=-9a
81a^2∈(1,4)
a∈(-2/9,-1/9)∪(1/9,2/9)
故a∈(-2,-1)∪(-2/9,-1/9)∪(1/9,2/9)∪(1,2)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 175*99+2*75用简便方法
- 2已知抛物线Y的平方=4X上有一点P到该抛物线准线的距离等于5,则经过点P和原点的直线的斜率是?
- 3这是什么数学计数法
- 40 39 51 54 264 77 253 1 2 121 92 63 4 7 11 81 34 130 91 32 19 47 73 56 134 630 23 6 37 95 28 49 342
- 5甲乙丙三人独立破译同一份密码,他们分别破译的概率为1/5.1/4.1/3.求改密码仅仅被三个人中的其中一个破译
- 6邻苯二甲酸氢钾标定浓度约为0.1mol/L氢氧化钠体积相对误差是0.1%怎样算至少用量
- 7how much is this new dress?同义句转换
- 8秦山核电站怎么走
- 9给个思路就好了
- 10有依次排列的3个数:3、9、8,对相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间.可产生一个新数串:3,6,9,-1.8,这称为第一次操作,做第二次操作后,也可以产生一个心数串:3,