当前位置: > 高三数学题函数f(x)=(1-t)ln(x-1)+x*x/2+(1-t)x+t*t/2+t,且t>1...
题目
高三数学题函数f(x)=(1-t)ln(x-1)+x*x/2+(1-t)x+t*t/2+t,且t>1
1)求f(x)的单调区间
2)设f(x)的最小值为u(t),对任意t属于(1,正无穷),求u(t)的最大值
3)若f(a)=f(b),其中a>b>1,求证:导函数f'[(a+b)/2]#0

提问时间:2021-04-01

答案
高三数学题函数f(x)=(1-t)ln(x-1)+x*x/2+(1-t)x+t*t/2+t,且t>1
1)求f(x)的单调区间
解析:∵函数f(x)=(1-t)ln(x-1)+x*x/2+(1-t)x+t*t/2+t, 且t>1
函数定义域为x>1
令F’(x)=(1-t)/(x-1)+x+(1-t) =(x^2-tx)/(x-1)=0==>x=t (t>1)
F’’(x)=[(2x-t) (x-1)- (x^2-tx)]/(x-1)^2=[(x^2-2x+t]/(x-1)^2
F’’(t)=[(t^2-t]/(t-1)^2>0
∴x=t时,函数f(x)取极小值f(t)=(1-t)ln(t-1)+t^2/2+(1-t)t+t^2/2+t=(1-t)ln(t-1)+2t
∴x∈(1,t]时,函数f(x)单调减;x∈(t,+ ∞)时,函数f(x)单调增;
2)设f(x)的最小值为u(t),对任意t属于(1,正无穷),求u(t)的最大值
解析:设u(t)= (1-t)ln(t-1)+2t
令U’(t)= -ln(t-1)+1=0==>t=e+1
U’’(t)= -1/(t-1)b>1,求证:导函数f'[(a+b)/2]#0
解析:∵x=t时,函数f(x)取极小值
∵f(a)=f(b),1
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.