题目
已知函数f(x)的定义域为,对定义域内的任意x1,x2,都有f(x1·x2)=f(x1)+f(x2),且当x>1时,f(x)>o
提问时间:2021-04-01
答案
原题:
已知函数f(x)定义域为{x|x≠0,x∈R},对定义域内的任意x1,x2都有f(x1•x2)=f(x1)+f(x2)且当x>1时f(x)>0,
(1)求f(1)与f(-1)值;
(2)求证:f(x)是偶函数;
(3)求证:f(x)在(0,+∞)上是增函数.
(1)令x1=x2=1
∵f(x1•x2)=f(x1)+f(x2)
∴f(1)=2f(1)
∴f(1)=0
令x1=-1,x2=1
f(-1)=f(-1)+f(1)
∴f(-1)=0;
(2)证明:令x1=-1
∵f(x1•x2)=f(x1)+f(x2)
∴f(x1•x2)=f(-x2)=f(-1)+f(x2)
又∵f(-1)=0
∴f(-x2)=f(x2)
故f(x)是偶函数;
(3)证明:令x1>1,当x2∈(0,+∞)时,x1•x2>x2
∵当x>1时f(x)>0
∴f(x1•x2)=f(x1)+f(x2)>f(x2).
故f(x)在(0,+∞)上是增函数.
已知函数f(x)定义域为{x|x≠0,x∈R},对定义域内的任意x1,x2都有f(x1•x2)=f(x1)+f(x2)且当x>1时f(x)>0,
(1)求f(1)与f(-1)值;
(2)求证:f(x)是偶函数;
(3)求证:f(x)在(0,+∞)上是增函数.
(1)令x1=x2=1
∵f(x1•x2)=f(x1)+f(x2)
∴f(1)=2f(1)
∴f(1)=0
令x1=-1,x2=1
f(-1)=f(-1)+f(1)
∴f(-1)=0;
(2)证明:令x1=-1
∵f(x1•x2)=f(x1)+f(x2)
∴f(x1•x2)=f(-x2)=f(-1)+f(x2)
又∵f(-1)=0
∴f(-x2)=f(x2)
故f(x)是偶函数;
(3)证明:令x1>1,当x2∈(0,+∞)时,x1•x2>x2
∵当x>1时f(x)>0
∴f(x1•x2)=f(x1)+f(x2)>f(x2).
故f(x)在(0,+∞)上是增函数.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1their life_______(change)a lot these years.
- 2黄铁矿是怎么形成的
- 3探究植物的蒸腾作用(蒸腾作用是植物体向大气散发水蒸气的现象)发生的主要场所.假设”植物的蒸腾作用主要发生在叶”,请根据已有的 (1)设计实验方案
- 4如图,搬运工人用滑轮组往4m高的平台上运砂石.已知每袋砂石的质量是63kg,动滑轮重70N.当工人匀速拉动绳索时,所用的拉力为多大?该滑轮组的机械效率为多少?(不计袋重、绳重和摩
- 5根据句意及首字母 This picture is l()beautiful than that one
- 6力学量之间的对易关系是否有什么物理意义?为什么作为力学量必须要求算符是线性的、厄米的?力的概念在量子力学与经典物理中的地位有什么不同?谢谢那位知道的告知下
- 7COMPUTERS HAVE CHANGED OUR LIVES的英语作文80个单词左右
- 8设A={1,2,3},给定A上二元关系R={,,},求r(R),s(R)和t(R).
- 9正圆锥定义是什么?
- 10What is the dominated culture of the U.S.
热门考点