当前位置: > 如图,△ABC是等边三角形,P是三角形内任一点,PD∥AB,PE∥BC,PF∥AC.求证:PD+PE+PF=AB....
题目
如图,△ABC是等边三角形,P是三角形内任一点,PD∥AB,PE∥BC,PF∥AC.求证:PD+PE+PF=AB.

提问时间:2021-04-01

答案
证明:延长EP交AB于点G,延长DP交AC与点H,
∵PD∥AB,PE∥BC,PF∥AC,
∴四边形AFPH、四边形PDBG均为平行四边形,
∴PD=BG,PH=AF.
又∵△ABC为等边三角形,
∴△FGP和△HPE也是等边三角形,
∴PE=PH=AF,PF=GF,
∴PE+PD+PF=AF+BG+FG=AB.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.