题目
丨OA丨=2,丨OB丨=2,向量OC=xOA+yOB且x+y=1,∠AOB是钝角,f(t)=丨OA-tOB丨的最小值为根号3,则丨OC丨的
提问时间:2021-04-01
答案
OC= xOA+yOB
f(t) = |OA-tOB|
[f(t)]^2= |OA|^2+t^2|OB|^2-2tOA.OB
= 4t^2-8tcos∠AOB + 4
([f(t)]^2)' = 8t -8cos∠AOB =0
t = cos∠AOB
min f(t) at t= cos∠AOB
f(cos∠AOB) =√[4-4(cos∠AOB)^2] =√3
4-4(cos∠AOB)^2=3
cos∠AOB = 1/2 or -1/2 (rejected)
∠AOB= π/3
|OC|^2 = x^2|OA|^2 +y^2|OB|^2 + 2xy|OA||OB|cos∠AOB
= 4x^2 +4y^2+4xy
= 4(x+y)^2-4xy
= 4- 4xy
>= 4- 4((x+y)/2)^2
= 4- 1
=3
min |OC| = √3
f(t) = |OA-tOB|
[f(t)]^2= |OA|^2+t^2|OB|^2-2tOA.OB
= 4t^2-8tcos∠AOB + 4
([f(t)]^2)' = 8t -8cos∠AOB =0
t = cos∠AOB
min f(t) at t= cos∠AOB
f(cos∠AOB) =√[4-4(cos∠AOB)^2] =√3
4-4(cos∠AOB)^2=3
cos∠AOB = 1/2 or -1/2 (rejected)
∠AOB= π/3
|OC|^2 = x^2|OA|^2 +y^2|OB|^2 + 2xy|OA||OB|cos∠AOB
= 4x^2 +4y^2+4xy
= 4(x+y)^2-4xy
= 4- 4xy
>= 4- 4((x+y)/2)^2
= 4- 1
=3
min |OC| = √3
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点
- 1赤道,北回归线,南回归线,北极圈和南极圈的纬度高低是多少?
- 2动词短语怎样区分:“动词+介词"和"动词+副词".
- 3空间虫洞存在吗?
- 4一个数,如果将它的小数点向左移动一位,那么所得的新数比原数少6.3,原数是_.
- 5高效液相色谱分离度不好该怎样处理?
- 60.11*28.2—0.72*1.1—0.11简算
- 7一个三角形和一个平行四边形面积相等,底也相等.如果平行四边形的高是12厘米,三角形的高是( )
- 8talk to your friend when___(feel)sad
- 9成等差数列4个数和26,第二和第三个数的乘积为40.求这四个数
- 10① 小明今年6岁,他的爸爸72岁,几年后小明的年龄是他爸爸的四分之一?