当前位置: > 泰勒公式的题 求大神...
题目
泰勒公式的题 求大神
设f(x)在(a,b)上有n阶导数存在,x1,x2是(a,b)内的两个定点,且f(x1)=f(x2),f‘(x2)=f''(x2)=.=f^(n-1)(x2)=0
试证在(a,b)内至少存在一点p,使得f^(n)(p)=0.

提问时间:2021-04-01

答案
将f(x1)在x2做Taylor展开,存在c位于(x1,x2),使得
f(x1)=f(x2)+f'(x2)(x1-x2)+f'(x2)(x1-x2)^2/2+...+f^(n-1)(x2)(x1-x2)^(n-1)/(n-1)!+f^n(c)(x1-x2)^n/n!.
注意到条件f(x1)=f(x2),以及f^(k)(x2)=0,1<=k<=n-1,于是上式变为
f^n(c)(x1-x2)^n/n!=0.故
f^n(c)=0.结论成立.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.