题目
1:不可约元均为素元能否推出任意实数a,b且a,b互素.必有实数u,v满足au+bv=1
2:Z是整数环,p是给定素数,求Z(根号下负5)所有不可约元.
2:Z是整数环,p是给定素数,求Z(根号下负5)所有不可约元.
提问时间:2021-04-01
答案
讨论前提是一个整环.
1 不可约元均为素元也就意味着是一个唯一分解整环(当然要满足因子链条件).而后者意味着要求这个整环是主理想整环.一个唯一分解整环不一定是主理想整环,而主理想整环一定是唯一分解的.因此这个题答案是否定的.比如Z[x],整系数多项式环,是唯一分解的(显然),但不是主理想整环.1+x与x^2是互素的(没有公因式),但怎么加都不会出来1的.
2 Z(根号-5)不是唯一分解整环.先证其中的单位只有正负1.记D=根号-5,则有a+bD为单位必有其范数为1.于是a^2+5b^2=1,有a=正负1,b=0.所以所有不可约元就是只有他本身与1两个约数(负的不算).
不妨设x是可约的,则有x=(a+bD)(c+dD)
两边取范数知N(x)=(a^+5b^2)(c^2+5d^2)
如果令x是不可约的,必有a^2+5d^2=1,c^2+5d^2=N(x)(负的先不考虑)是唯一的可能情形.考虑所以c^2+5d^2可能的值,列出就是1 4 5 6 9 14...
所有范数不能表示为这个列中两数之积的就是不可约元.比如2,3 1+D,1-D,2+D等,恐怕没法写出通式来.举例算一个吧
2+D
设2+D=(a+bD)(c+dD)
左右取范数有
9=(a^2+5b^2)(c^2+5d^2)
反设可约,则必有a^2+5b^2=c^2+5d^2=3,这是不可能的.
1 不可约元均为素元也就意味着是一个唯一分解整环(当然要满足因子链条件).而后者意味着要求这个整环是主理想整环.一个唯一分解整环不一定是主理想整环,而主理想整环一定是唯一分解的.因此这个题答案是否定的.比如Z[x],整系数多项式环,是唯一分解的(显然),但不是主理想整环.1+x与x^2是互素的(没有公因式),但怎么加都不会出来1的.
2 Z(根号-5)不是唯一分解整环.先证其中的单位只有正负1.记D=根号-5,则有a+bD为单位必有其范数为1.于是a^2+5b^2=1,有a=正负1,b=0.所以所有不可约元就是只有他本身与1两个约数(负的不算).
不妨设x是可约的,则有x=(a+bD)(c+dD)
两边取范数知N(x)=(a^+5b^2)(c^2+5d^2)
如果令x是不可约的,必有a^2+5d^2=1,c^2+5d^2=N(x)(负的先不考虑)是唯一的可能情形.考虑所以c^2+5d^2可能的值,列出就是1 4 5 6 9 14...
所有范数不能表示为这个列中两数之积的就是不可约元.比如2,3 1+D,1-D,2+D等,恐怕没法写出通式来.举例算一个吧
2+D
设2+D=(a+bD)(c+dD)
左右取范数有
9=(a^2+5b^2)(c^2+5d^2)
反设可约,则必有a^2+5b^2=c^2+5d^2=3,这是不可能的.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 12个班同学植树,1班a人每人植树b课,二班c人植树d课,平均每班植树( )课,平均每人植树( )课,
- 2The workers_(build) a new bridge next year
- 3质量为3kg的木块被200N的水平力F压在竖直墙上不动,物体对墙壁的压力是多大?物体受到的摩擦力多大?
- 4beat的过去分词是什么
- 5为什么弱酸可以制强酸?
- 6这些都是我不会的 我实在是没分了
- 7某人身高1.7m,为了测试路灯的高度,他从路灯正下方沿平直公路以1m/s的速度匀速走开.某时刻他的影子长为1.3m,再经过2s,他的影子长为1.8m,路灯距地面的高度是_m.
- 8什么叫功、功率、机械功率、功率是什么?
- 910个精品带有关联词的句子,简短一些
- 10150%,1,3/4,60%,( ),( ),( ) 找规律填数.第一括号小数,
热门考点