当前位置: > 证明:如果一个球面的球心坐标(x0,y0,z0)中至少有一个是无理数,则此球面上任何四个不在同一平面上的点中至多有三个点使其坐标都是有理数....
题目
证明:如果一个球面的球心坐标(x0,y0,z0)中至少有一个是无理数,则此球面上任何四个不在同一平面上的点中至多有三个点使其坐标都是有理数.

提问时间:2021-04-01

答案
球面的标准方程为:(x−x0)2+(y−y0)2+(z−z0)2=r2.利用反证法进行证明.假设结论不成立,即:球面上存在四个不在同一平面上的点Pi(xi,yi,zi)(i=1,2,3,4),其坐标都是有理数.将点Pi的坐标代入圆的标准方...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.