题目
已知tanα=-2,则(3tan2α-sinαcosα+cos2α)/(2sinαcosα+5cos2α)的值为____
提问时间:2021-04-01
答案
(3tan2α-sinαcosα+cos2α)/(2sinαcosα+5cos2α)
=(3tan2a-1/2sin2a+cos2a)/(sin2a+5cos2a)
tan2a=2tana/1-tan^2a=-4/-3=4/3
tan2a=sin2a/cos2a
sin2a=4/3cos2a
(3tan2a-1/2sin2a+cos2a)/(sin2a+5cos2a)
=(3tan2a+1/3cos2a)/(19/3cos2a)
cos2a=-0.6
(3tan2a+1/3cos2a)/(19/3cos2a)
=(-6-1/5)/(-19/5)
=31/5*5/19
=31/19
∴(3tan2α-sinαcosα+cos2α)/(2sinαcosα+5cos2α)的值为31/19
=(3tan2a-1/2sin2a+cos2a)/(sin2a+5cos2a)
tan2a=2tana/1-tan^2a=-4/-3=4/3
tan2a=sin2a/cos2a
sin2a=4/3cos2a
(3tan2a-1/2sin2a+cos2a)/(sin2a+5cos2a)
=(3tan2a+1/3cos2a)/(19/3cos2a)
cos2a=-0.6
(3tan2a+1/3cos2a)/(19/3cos2a)
=(-6-1/5)/(-19/5)
=31/5*5/19
=31/19
∴(3tan2α-sinαcosα+cos2α)/(2sinαcosα+5cos2α)的值为31/19
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1有一次甲、乙、丙三位好朋友和乘一辆出租车,讲好大家分摊车费,甲在全行程的1/3处下车,到了2/3处乙也下车了,最后丙一个人坐到终点,付给司机90元.请你算算,甲、乙应该各付给丙
- 2为什么NaHCO3溶液显碱性,而NaHSO3溶液显酸性
- 3(语文)表现手法是否包括修辞手法
- 4解方程:(2x-3)²+5(3-2x)+6=0
- 517.假定X、Y的价格Px 、Py 已定,当MRSxy >Px /Py 时,消费者为达到最大满足,他将( ).A.增加X,
- 6宇宙是有一次大爆炸后形成的吗?
- 7SO2的杂化类型是什么
- 881^(x+1)-27^(2x-3) = 0
- 9浓硫酸在各物质中的溶解性
- 10已知关于x的实系数二次方程x2+ax+b=0有两个实根α,β.证明:|α|<2.|β|<2,那么2|a|<4+b
热门考点