题目
嘉兴市2007----2008学年第二学期期末检测 (24 18:0:15)
已知数列{an}中,a2=3,Sn是{an}的前n项和,且Sn是nan与n的等差中项.
(1)求a1,a3
(2)猜想一个an的表达式,并用数学归纳法证明你的猜想.
已知数列{an}中,a2=3,Sn是{an}的前n项和,且Sn是nan与n的等差中项.
(1)求a1,a3
(2)猜想一个an的表达式,并用数学归纳法证明你的猜想.
提问时间:2021-04-01
答案
2sn=nan+n
2s2=2*3+2=8
s2=4
s2=a1+a2
4=a1+3
a1=1
2s3=3*a3+3
2(s2+a3)=3a3+3
2(4+a3)=3a3+3
8+2a3=3a3+3
a3=5
an=2n-1
用数学归纳法证明
n=1,成立
若n=k时,Sk=(1/4)(ak+1)^2,ak=2k-1
Sk=(1/4)*(2k-1+1)^2=k^2,
则n=k+1时
S(k+1)=a(k+1)+Sk=(1/4)[(a(k+1)+1]^2
4a(k+1)+4k^2=[a(k+1)+1]^2
[a(k+1)]^2+2a(k+1)+1-4a(k+1)-4k^2=0
[a(k+1)]^2-2a(k+1)+1-4k^2=0
[a(k+1)-(1+2k)][a(k+1)-(1-2k)]=0
所以a(k+1)=1+2k,a(k+1)=1-2k
因为an是正数数列
所以a(k+1)=2k+1=2(k+1)-1
得证
an=2n-1
2s2=2*3+2=8
s2=4
s2=a1+a2
4=a1+3
a1=1
2s3=3*a3+3
2(s2+a3)=3a3+3
2(4+a3)=3a3+3
8+2a3=3a3+3
a3=5
an=2n-1
用数学归纳法证明
n=1,成立
若n=k时,Sk=(1/4)(ak+1)^2,ak=2k-1
Sk=(1/4)*(2k-1+1)^2=k^2,
则n=k+1时
S(k+1)=a(k+1)+Sk=(1/4)[(a(k+1)+1]^2
4a(k+1)+4k^2=[a(k+1)+1]^2
[a(k+1)]^2+2a(k+1)+1-4a(k+1)-4k^2=0
[a(k+1)]^2-2a(k+1)+1-4k^2=0
[a(k+1)-(1+2k)][a(k+1)-(1-2k)]=0
所以a(k+1)=1+2k,a(k+1)=1-2k
因为an是正数数列
所以a(k+1)=2k+1=2(k+1)-1
得证
an=2n-1
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
- 1古今异义词.1、尝贻余核舟一.中的尝,古义:今义:
- 2Mircowave Oven和 Refrigerator中文意思
- 3快乐暑假的英文是什么
- 4深蓝的天空中挂着一轮圆月.(改为比喻句)
- 5建筑公司要在一段长1200米,宽30米的路面上铺10厘米厚的砂石如果一辆大卡车一次能运15立方米,的砂石,3辆这样的大卡车需运多少次?
- 6圆O的两条弦AB、CD相交于点E,已知AE=4,ED=3,CE=6,求AB的长
- 7请问foreground to transparent是什么意思
- 8六个连续奇数的和是120,你知道这六个连续的奇数分别是几吗?
- 9薄膜是读bao还是bo
- 10spend expend cost expenditure expenses pay defray payment payoff afford都和支付、花费有关,区别在哪
热门考点