当前位置: > 29、(本题4分)如图△ABC中,内角∠A和外角∠CBE和∠BCF的角平分线交于点P,AP交BC于D.过B作BG⊥AP于G...
题目
29、(本题4分)如图△ABC中,内角∠A和外角∠CBE和∠BCF的角平分线交于点P,AP交BC于D.过B作BG⊥AP于G
(1) 若∠GBP=45º,求证:AC⊥BC;
(2) 在图上作出△PDC在PC边的高DH,并探究∠APB和∠HDC的数量关系,并说明理由;

提问时间:2021-04-01

答案
我来试试.
1)
根据题意,有:
∠BAP=∠CAP,∠CBP=∠EBP,∠BCP=FCP
设∠BAP=∠CAP=∠1,∠BCP=FCP=∠2,∠CBP=∠EBP=∠3
显然:2∠3=2∠1+(180度-2∠2),简化后得到:∠2+∠3-∠1=90度.(1)
∵∠GBP=45度,但是BG⊥AP
∴∠GPB=45度
从而有,∠GPB+∠1=∠3,即∠3-∠1=∠GPB=45度.(2)
结合(1)和(2)可得:∠2+45度=90度,即∠2=45度
∵∠2=45度
∴∠BCP=FCP=∠2=45度,即∠BCF=90度,BC⊥CF
∵F在AC的延长向上
∴BC⊥AC
2)
∵∠GPB=∠3-∠1,∠HDC=90度-∠2
∴∠GPB-∠HDC=∠3-∠1-90度+∠2=(∠2+∠3-∠1)-90度=0
即:∠GPB=∠HDC
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.