当前位置: > 设m,n∈R,若直线(m+1)x+(n+1)y-2=0与圆(x-1)²+(y-1)²=1相切,则m+n的取值范围是...
题目
设m,n∈R,若直线(m+1)x+(n+1)y-2=0与圆(x-1)²+(y-1)²=1相切,则m+n的取值范围是
由圆的标准方程(x-1)^2+(y-1)^2=1
得圆心(1,1),半径r=1
∵直线(m+1)x+(n+1)y-2=0与圆(x-1)^2+(y-1)^2=1相切
∴圆心到直线的距离d=|m+1+n+1-2|/√[(m+1)²+(n+1)²] =r=1.
整理得m+n+1=mn≤[(m+n)/2]²
令m+n=t,则有t+1≤ t²/4
即t²-4t-4≥ 0
解得t≥ 2+2√2或t ≤2-2√2
∴m+n的取值范围是(-∞,2-2√2]∪[2+2√2,+∞).
最官方的答案过程是以上所述,为什么能用均值不等式?均值不等式的使用条件不是m,n均大于0才行吗?

提问时间:2021-04-01

答案
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.