当前位置: > 在等差数列{an}中,a10=30,a20=50. (1)求数列{an}的通项an; (2)令bn=2 an-10,证明:数列{bn}为等比数列; (3)求数列{nbn}的前n项和Tn....
题目
在等差数列{an}中,a10=30,a20=50.
(1)求数列{an}的通项an
(2)令bn=2 an-10,证明:数列{bn}为等比数列;
(3)求数列{nbn}的前n项和Tn

提问时间:2021-04-01

答案
(1)设数列{an}首项为a1,公差为d,
依题意知
a1+9d=30
a1+19d=50
,解得a1=12,d=2,
∴an=12+(n-1)×2=2n+10.
(2)证明:∵an=2n+10,
∴bn=2 an-10=22n=4n
bn+1
bn
=
4n+1
4n
=4,
∴数列{bn}是以首项b1=4,公比为4的等比数列.
(3)∵nbn=n•4n
∴Tn=1•4+2•42+…+n•4n,①
4Tn=1•42+2•43+…+n•4n+1,②
①-②,得-3Tn=4+42+…+4n-n•4n+1=
4(1-4n)
1-4
-n•4n+1=-
4
3
+(
1
3
-n)•4n+1

∴Tn=
4
9
+(
n
3
-
1
9
)•4n+1
(1)等差数列{an}中,由a10=30,a20=50.解得a1=12,d=2,由此能求出数列{an}的通项an
(2)由an=2n+10,知bn=2 an-10=22n=4n,由此能够证明数列{bn}是等比数列.
(3)由nbn=n•4n,知Tn=1•4+2•42+…+n•4n,由此利用错位相减法能求出数列{nbn}的前n项和Tn

数列的求和;等比关系的确定;等差数列的性质.

本题考查数列的通项公式的求法,考查等比数列的证明,考查数列的前n项和的求法.解题时要认真审题,仔细解答,注意错位相减法的合理运用.

举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.