当前位置: > 导数的应用,面积、体积的最值问题....
题目
导数的应用,面积、体积的最值问题.
等腰三角形的周长为2p,它围绕底边旋转一周成一个几何体,问三角形的各边长分别是多少时,几何体的体积最大?

提问时间:2021-04-01

答案
设腰长为x,底边为2y,则2x+2y=2p,所以x+y=p
题中所求几何体就是两个相等的圆锥的体积之和,
该圆锥高为y,底面面积S=派(x^2-y^2)
所以所求几何体的体积V=[2派(x^2-y^2)*y]/3
将x=p-y代入得V=[2派((p-y)^2-y^2)*y]/3
=2派(-2py^2+p^2y)/3
显然当y=p/4时V有最大值,即三角形的腰为3p/4、底边为p/2时,几何体的体积最大.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.