当前位置: > 证明 1+1/√2+1/√3+……1/√n-2√n 有极限...
题目
证明 1+1/√2+1/√3+……1/√n-2√n 有极限

提问时间:2021-04-01

答案
1 + 1/√2 + 1/√3 + 1/√4 + … + 1/√n
=2/(2√1) + 2/(2√2) + 2/(2√3) + 2/(2√4) + … + 2/(2√n)
≤2/(√0+√1) + 2/(√1+√2) + 2/(√2+√3) + 2/(√3+√4) + … + 2/[√(n-1)+√n]
= 2 (√1-√0) + 2(√2-√1) + 2 (√3-√2) + 2 (√4-√3) + … + 2 [√n-√(n-1)]
=2√n
那么
1+1/√2+1/√3+……1/√n-2√n≤0
同理
1 + 1/√2 + 1/√3 + 1/√4 + … + 1/√n
=2/(2√1) + 2/(2√2) + 2/(2√3) + 2/(2√4) + … + 2/(2√n)
≥2/(√2+√1) + 2/(√3+√2) + 2/(√4+√3) + 2/(√5+√4) + … + 2/[√(n+1)+√n]
= 2 (√2-√1) + 2(√3-√2) + 2 (√4-√3) + 2 (√5-√4) + … + 2 [√n+1-√n]
=2√(n+1) -2
那么1+1/√2+1/√3+……1/√n-2√n≥2√(n+1) -2 - 2√n > -3
所以上限下限都存在,极限一定存在.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.