当前位置: > 已知奇函数f(x)在(0,正无穷)上单调递增,且f(3)=0,则不等式x(乘以)f(x)...
题目
已知奇函数f(x)在(0,正无穷)上单调递增,且f(3)=0,则不等式x(乘以)f(x)

提问时间:2021-04-01

答案
设x1<x2<0;
则-x1>-x2>0
又f(x)在(0,+∞)上是增函数,得:
f(-x1)>f(-x2)
又f(x)是奇函数
∴-f(x1)>-f(x2)
f(x1)<f(x2)
∴f(x)在(-∞,0)上也是增函数;
又f(3)=0
∴f(-3)=-f(3)=0
不等式xf(x)<0
当x>0时,等价于f(x)<0
又f(x)在(0,+∞)上是增函数,且f(3)=0
∴x>0时,f(x)<0等价x<3;
∴0<x<0
同理:x<0时,原不等式等价f(x)>0
f(x)在(-∞,0)上是增函数,且f(-3)=0
∴x<0时,f(x)>0等价x>-3
∴-3<x<0
∴xf(x)<0的解集为:{x/-3<x<0或0<x<-3}
或表示成{x/-3<x<3且x≠0}
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.