当前位置: > 已知二次函数y=f(x)的定义域为R,f(1)=2,在x=t处取得最值,若y=g(x)为一次函数,...
题目
已知二次函数y=f(x)的定义域为R,f(1)=2,在x=t处取得最值,若y=g(x)为一次函数,
且f(x)+g(x)=x2+2x-3
(1) 求y=f(x)的解析式;
(2) 若x∈[-1,2]时,f(x)≥-1恒成立,求t的取值范围;
解:(1) 设f(x)=a(x-t)2+b, 又因为f(x)+g(x)=x2+2x-3
所以a=1,即f(x)=(x-t)2+b ,
又f(1)=2 代入得(1-t)2+b=2,得b=
-t2+2t+1
所以f(x)=x2-2tx+2t+1;
(2)利用二次函数图象求函数f(x)在区间内的最小值,只需f(x)min≥-1即可.
①当t≤-1时,f(x)min≥-1不成立,
②当-1-t2+2t+1-1得
③当t≥2时,f(x)min=f(2)≥-1,得
第二小题的三个讨论怎么解 详细点

提问时间:2021-04-01

答案
如果t在(-1,2)内,那么f(t)在x=t有最小值,f(t)=-t^2+2t+1>=-1,t^2-2t-2
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.