当前位置: > 已知以双曲线C的两个焦点及虚轴的两个端点为顶点的四边形中,有一个内角为60°,则双曲线C的离心率为(  ) A.22 B.32 C.62 D.2...
题目
已知以双曲线C的两个焦点及虚轴的两个端点为顶点的四边形中,有一个内角为60°,则双曲线C的离心率为(  )
A.
2
2

B.
3
2

C.
6
2

D. 2

提问时间:2021-04-01

答案
设双曲线C的焦点坐标是F1和F2,虚轴两个端点是B1和B2,则四边形F1B1F2B2为菱形.
若∠B2F1B1=60°,则∠B2F1F2=30°.
由勾股定理可知c=
3
b,∴a=
2
b,
故双曲线C的离心率为e=
3
b
2
b
=
6
2

若∠F1B2F2=60°,则∠F1B2B1=30°,由勾股定理可知b=
3
c,不满足c>b,所以不成立.
综上所述,双曲线C的离心率为
6
2

故选:C.
根据题设条件,先设∠B2F1B1=60°,求出双曲线的离心率.再设∠F1B2F2=60°,求出双曲线的离心率.

双曲线的简单性质.

解题时应该分∠B2F1B1=60°和∠F1B2F2=60°两种情况求出双曲线的离心率.解题时要注意a,b,c中c最大.

举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.