当前位置: > 高数:设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1...
题目
高数:设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1,试证:对于任意给定的正数a,b,在(0,1)内存在不同的ζ,η,使a/f'(ζ)+b/f'(η)=a+b.
提示:利用介值定理,再应用拉格朗日中值定理

提问时间:2021-04-01

答案
由介值定理,存在c∈(0,1),使f(c) = a/(a+b).
由Lagrange中值定理,存在ζ∈(0,c),使f'(ζ) = (f(c)-f(0))/(c-0),即有(a+b)c = a/f'(ζ).
又存在η∈(c,1),使f'(η) = (f(1)-f(c))/(1-c),即有(a+b)(1-c) = b/f'(η).
于是ζ < η满足a/f'(ζ)+b/f'(η) = a+b.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.