题目
多层复合函数的单调性与一个有关自然对数极限的证明.
命题一:对于一个多层的复合函数,如果其中有偶(奇)数个减函数,那么整个复合函数是增(减)函数.
这个命题我觉得可以类比正负数的运算,只是也许其中有什么不同,要一个严格的数学论证过程.证伪也行,反正是我胡思乱想找的.
命题二:lim[(a^n-1)/n]=lna(n→∞)
这个东西可以从指数函数的导数公式得到,只是我就是想用这个来证明它的,想看看能不能从别的地方证明这个.
命题一:对于一个多层的复合函数,如果其中有偶(奇)数个减函数,那么整个复合函数是增(减)函数.
这个命题我觉得可以类比正负数的运算,只是也许其中有什么不同,要一个严格的数学论证过程.证伪也行,反正是我胡思乱想找的.
命题二:lim[(a^n-1)/n]=lna(n→∞)
这个东西可以从指数函数的导数公式得到,只是我就是想用这个来证明它的,想看看能不能从别的地方证明这个.
提问时间:2021-04-01
答案
第一个:
可以用数学归纳法证.我们证一个,其它的一样
如果f1,...,f2k+1,2k+1都是减函数,那么他们的复合是减的.
k=0时,只有一个f1,是减的
两个减的复合是增的是显然的
设k=n时,成立
即f1,...,f2n+1的复合是减的,那么再复合两个
f2n+n,f2n+3,把这两个复合以后,再和前面的复合.
f2n+n,f2n+3复合是增的,前面的一堆由归纳假设是减的,所以总复合是减的.
这说明 f1,...f2(n+1)+1也成立,证毕.
第二个,n→∞时,极限不是lna,
可以用数学归纳法证.我们证一个,其它的一样
如果f1,...,f2k+1,2k+1都是减函数,那么他们的复合是减的.
k=0时,只有一个f1,是减的
两个减的复合是增的是显然的
设k=n时,成立
即f1,...,f2n+1的复合是减的,那么再复合两个
f2n+n,f2n+3,把这两个复合以后,再和前面的复合.
f2n+n,f2n+3复合是增的,前面的一堆由归纳假设是减的,所以总复合是减的.
这说明 f1,...f2(n+1)+1也成立,证毕.
第二个,n→∞时,极限不是lna,
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1作文《我的孤独》200字
- 2改病句:六年级上册语文课本的内容和插图都很丰富.
- 3化简:cos(π/4-x)乘cos(π/4+x)
- 4下雪后,路面上积了厚厚的一层雪,为了使雪尽快熔化,常在路面积雪上喷洒盐水.为什么?
- 5一根钢筋长五分之三米,用去四分之一,还剩多少米,如果用去四分之一米,还剩多少米?
- 6甲乙两个盒子里共有乒乓球93个,如果从甲盒取出十分之一放到乙盒里,乙盒就比甲盒多3个.
- 7尼尔的家在伦敦附近的小镇上怎么翻译
- 8有一个数,除以504余423,那么它除以7,8,9的三个余数之和是多少?
- 9孔子马逸告诉我们什么道理?
- 10Everything——is shown is of great use to
热门考点
- 1两只完全相同的球从同高度分别以相同速度抛出,甲球竖直向上抛乙球竖直向下不考虑空气阻力影响
- 2现代汉语辞典和成语字典不一样
- 3一个长方形和一个正方形面积相等,已知正方形的周长是16厘米,长方形的面积是多少厘米?
- 4-5的符合是 ,绝对值是 ;符号是“-”,绝对值是5的数是 .
- 5下面这句话可以理解为几种不同的意思,你能写出来吗
- 6天王星的公转和自转是多少?
- 7Jane did a very good____.The manager was satisfied with her____.
- 8《五柳先生传》中的“不戚戚于贫贱,不汲汲于富贵”怎么解释
- 9He is going to take care of his grandmother.改成主动或被动语态
- 10在3NO2+H2O═2HNO3+NO↑反应中,氧化剂与还原剂的分子数之比为( ) A.2:1 B.1:2 C.3:1 D.1:3