当前位置: > 求1/(1*2*3*4)+1/(2*3*4*5)+1/(3*4*5*6)至n项之和...
题目
求1/(1*2*3*4)+1/(2*3*4*5)+1/(3*4*5*6)至n项之和

提问时间:2021-03-31

答案
先看 1/(n*(n+1)*(n+2)*(n+3) )
=1/(n^2+3n)*(n^2+3n+2)
=1/2(1/(n^2+3n)-1/(n^2+3n+2))
=1/2(1/3(1/n-1/(n+3))-(1/(n+1)-1/(n+2))
=1/6 (1/n-1/(n+3)) -1/2(1/(n+1)-1/(n+2))
所以1/(1*2*3*4)=1/6 (1-1/4) -1/2(1/2-1/3)
1/(2*3*4*5)=1/6(1/2-1/5)-1/2(1/3-1/4)
1/(3*4*5*6)=1/6(1/3-1/6)-1/2(1/4-1/5)
1/(1*2*3*4)+1/(2*3*4*5)+1/(3*4*5*6)+...+1/(n*(n+1)*(n+2)*(n+3))
=1/6(1-1/4+1/2-1/5+1/3-1/6+.+1/n-1/(n+3))-1/2(1/2-1/3+1/3-1/4+1/4-1/5+.+1/(n+1)-1/(n+2))
=1/6(1-1/4+1/2-1/5+1/3-1/6+...+1/n-1/(n+3))-1/2(1/2-1/(n+2))
=1/6(1+1/2+1/3 -1/(n+1)-1/(n+2)-1/(n+3)) -1/2(1/2-1/(n+2))
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.