题目
总结一下数学中解圆锥曲线问题的主要方法?
提问时间:2021-03-31
答案
数形结合法
解析几何是代数与几何的一种统一,常要将代数的运算推理与几何的论证说明结合起来考虑问题,在解题时要充分利用代数运算的严密性与几何论证的直观性,尤其是将某些代数式子利用其结构特征,想象为某些图形的几何意义而构图,用图形的性质来说明代数性质.
参数法
(1)点参数利用点在某曲线上设点(常设“主动点”),以此点为参数,依次求出其他相关量,再列式求解.如x轴上一动点P,常设P(t,0);直线x-2y+1=0上一动点P.除设P(x1,y1)外,也可直接设P(2y,-1,y1)
(2)斜率为参数
当直线过某一定点P(x0,y0)时,常设此直线为y-y0=k(x-x0),即以k为参数,再按命题要求依次列式求解等.
(3)角参数
当研究有关转动的问题时,常设某一个角为参数,尤其是圆与椭圆上的动点问题.
代入法
这里所讲的“代入法”,主要是指条件的不同顺序的代入方法,如对于命题:“已知条件P1,P2求(或求证)目标Q”,方法1是将条件P1代入条件P2,方法2可将条件P2代入条件P1,方法3可将目标Q以待定的形式进行假设,代入P1,P2,这就是待定法.不同的代入方法常会影响解题的难易程度,因此要学会分析,选择简易的代入法.
解析几何是代数与几何的一种统一,常要将代数的运算推理与几何的论证说明结合起来考虑问题,在解题时要充分利用代数运算的严密性与几何论证的直观性,尤其是将某些代数式子利用其结构特征,想象为某些图形的几何意义而构图,用图形的性质来说明代数性质.
参数法
(1)点参数利用点在某曲线上设点(常设“主动点”),以此点为参数,依次求出其他相关量,再列式求解.如x轴上一动点P,常设P(t,0);直线x-2y+1=0上一动点P.除设P(x1,y1)外,也可直接设P(2y,-1,y1)
(2)斜率为参数
当直线过某一定点P(x0,y0)时,常设此直线为y-y0=k(x-x0),即以k为参数,再按命题要求依次列式求解等.
(3)角参数
当研究有关转动的问题时,常设某一个角为参数,尤其是圆与椭圆上的动点问题.
代入法
这里所讲的“代入法”,主要是指条件的不同顺序的代入方法,如对于命题:“已知条件P1,P2求(或求证)目标Q”,方法1是将条件P1代入条件P2,方法2可将条件P2代入条件P1,方法3可将目标Q以待定的形式进行假设,代入P1,P2,这就是待定法.不同的代入方法常会影响解题的难易程度,因此要学会分析,选择简易的代入法.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1百度知道——数学题
- 2能量转换问题.
- 3我学珠算加减口诀:加一双下九、.
- 4昆虫记里的科学知识
- 5She has a soccer ball (改为否定句)
- 6下面的式子中,是方程的是( ) A.2x-16 B.5x-4x=2 C.7×0.5+5=8.5 D.x+0.75<6
- 7如果一堂课四十分钟,那么那个班做练习用的时间最长(五一班做了十分钟,五二班做了五分之一)
- 8just she is my mum never change and i love her
- 9小刚第一天乘车5小时,步行3小时共行187米.第二天乘车6小时步行2小时共行218米求乘车和步行的速度各多少
- 10已知2分之x-1减3分之x等于1,求分式x+2分之根号x
热门考点