题目
设F是抛物线G:x2=4y的焦点.
(Ⅰ)过点P(0,-4)作抛物线G的切线,求切线方程;
(Ⅱ)过抛物线G的焦点F,作两条互相垂直的直线,分别交抛物线于A,C,B,D点,求四边形ABCD面积的最小值.
(Ⅰ)过点P(0,-4)作抛物线G的切线,求切线方程;
(Ⅱ)过抛物线G的焦点F,作两条互相垂直的直线,分别交抛物线于A,C,B,D点,求四边形ABCD面积的最小值.
提问时间:2021-03-31
答案
(I)由题设切线y=kx-4(k显然存在)
又x2=4y联立得x2-4kx+16=0
∴△=0即16k2-4×16=0,解得k=±2
∴切线方程为y=±2x-4
(II)由题意,直线AC斜率存在,又对称性,不妨k>0
∴AC:y=kx+1∴x2-4kx-4=0
又x2=4y
∴x1+x2=4kx1•x2=-4
∴|AC|=
又x2=4y联立得x2-4kx+16=0
∴△=0即16k2-4×16=0,解得k=±2
∴切线方程为y=±2x-4
(II)由题意,直线AC斜率存在,又对称性,不妨k>0
∴AC:y=kx+1∴x2-4kx-4=0
又x2=4y
∴x1+x2=4kx1•x2=-4
∴|AC|=
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好 奥巴马演讲不用看稿子.为什么中国领导演讲要看? 想找英语初三上学期的首字母填空练习…… 英语翻译 1,人们染上烟瘾,最终因吸烟使自己丧命. 最新试题
热门考点
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.
|