当前位置: > 三角函数的奇偶性...
题目
三角函数的奇偶性
f(x)=sin(wx+b) w>0
若f(x)为偶函数,则b=π/2 +kπ.
我觉得应该:f(x)=sin[w(x+b/w)] b/w=π/2 +kπ 为什么错,为什么对?帮我详细说明下!
sin(wx+π/2+kπ)=-cos(wx+kπ)=-coswx
根据奇变偶不变,sin(wx+π/2+kπ)应=coscos(wx+kπ) 求不去了?

提问时间:2021-03-31

答案
"f(x)=sin(wx+b) w>0 若f(x)为偶函数,则b=π/2 +kπ"这个就对了因为f(x)为偶函数的情况只可能是f(x)=cosX+...的形式所以要将x前的系数W改为π/2加或减 然后利用诱导公式才能转换成cosX的形式才符合题目中偶函数的条...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.